Power and Stability Properties of Resampling-Based Multiple Testing Procedures with Applications to Gene Oncology Studies
نویسندگان
چکیده
Resampling-based multiple testing procedures are widely used in genomic studies to identify differentially expressed genes and to conduct genome-wide association studies. However, the power and stability properties of these popular resampling-based multiple testing procedures have not been extensively evaluated. Our study focuses on investigating the power and stability of seven resampling-based multiple testing procedures frequently used in high-throughput data analysis for small sample size data through simulations and gene oncology examples. The bootstrap single-step minP procedure and the bootstrap step-down minP procedure perform the best among all tested procedures, when sample size is as small as 3 in each group and either familywise error rate or false discovery rate control is desired. When sample size increases to 12 and false discovery rate control is desired, the permutation maxT procedure and the permutation minP procedure perform best. Our results provide guidance for high-throughput data analysis when sample size is small.
منابع مشابه
Resampling-based Multiple Testing for Microarray Data Analysis
The burgeoning field of genomics has revived interest in multiple testing procedures by raising new methodological and computational challenges. For example, microarray experiments generate large multiplicity problems in which thousands of hypotheses are tested simultaneously. Westfall and Young (1993) propose resampling-based p-value adjustment procedures which are highly relevant to microarra...
متن کاملTesting for trends in dose-response microarray experiments: a comparison of several testing procedures, multiplicity and resampling-based inference.
Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of increasing dose levels. A gene is called di...
متن کاملRapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study.
Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic basis of gene expression and complex traits. In a typical eQTL study, the huge number of genetic markers and expression traits and their complicated correlations present a challenging multiple-testing correction problem. The resampling-based test using permutation or bootstrap...
متن کاملResampling-based false discovery rate controlling multiple test procedures for correlated test statistics
A new false discovery rate controlling procedure is proposed for multiple hypotheses testing. The procedure makes use of resampling-based p-value adjustment, and is designed to cope with correlated test statistics. Some properties of the proposed procedure are investigated theoretically, and further properties are investigated using a simulation study. According to the results of the simulation...
متن کاملFDR adjustments of Microarray Experiments (FDR-AME)
Purpose This R package adjusts p-values generated in multiple hypotheses testing of gene expression data obtained by a microarray experiment. The software applies multiple testing procedures that control the False Discovery Rate (FDR) criterion introduced by Benjamini and Hochberg (1995). It applies both theoretical-distribution-based and resampling-based multiple testing procedures, and presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013